The Bernoulli boundary condition for traveling water waves
نویسندگان
چکیده
منابع مشابه
The Bernoulli boundary condition for traveling water waves
The Bernoulli boundary condition for traveling water waves is obtained from Euler’s equation for inviscid flow by employing two key reductions: (i) the traveling wave assumption, (ii) the introduction of a velocity potential. Depending on the order of these reductions, the Bernoulli boundary condition may or may not contain an arbitrary constant. This note shows the equivalence of the two formu...
متن کاملTHE ONE PHASE FREE BOUNDARY PROBLEM FOR THE p-LAPLACIAN WITH NON-CONSTANT BERNOULLI BOUNDARY CONDITION
Our objective, here, is to generalize our earlier results on the existence of classical convex solution to a free boundary problem with a Bernoullitype boundary gradient condition and with the p-Laplacian as the governing operator. The main theorems of this paper assert that the exterior and the interior free boundary problem with a Bernoulli law, i.e. with a prescribed pressure a(x) on the “fr...
متن کاملA Free Boundary Problem for the Laplacian with Constant Bernoulli-type Boundary Condition
We study a free boundary problem for the Laplace operator, where we impose a Bernoulli-type boundary condition. We show that there exists a solution to this problem. We use A. Beurling’s technique, by defining two classes of suband supersolutions and a Perron argument. We try to generalize here a previous work of A. Henrot and H. Shahgholian. We extend these results in different directions.
متن کاملThin Film Traveling Waves and the Navier Slip Condition
We consider the lubrication model for a thin film driven by competing gravitational forces and thermal gradients on an inclined plane. We are interested in the general traveling wave problem when the Navier slip boundary condition is used. We contrast (1) gravity dominated flow, (2) Marangoni dominated flow, and (3) flow in which the two driving effects balance. For a “singular slip” model we s...
متن کاملTraveling Waves for a Boundary Reaction-diffusion Equation
We prove the existence of a traveling wave solution for a boundary reaction diffusion equation when the reaction term is the combustion nonlinearity with ignition temperature. A key role in the proof is plaid by an explicit formula for traveling wave solutions of a free boundary problem obtained as singular limit for the reaction-diffusion equation (the so-called high energy activation energy l...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Applied Mathematics Letters
سال: 2013
ISSN: 0893-9659
DOI: 10.1016/j.aml.2012.12.008